Hierarchical Design Space Exploration for Distributed CNN Inference at the Edge

Abstract

Convolutional Neural Network (CNN) models for modern applications are becoming increasingly deep and complex. Thus, the number of different CNN mapping possibilities when deploying a CNN model on multiple edge devices is vast. Design Space Exploration (DSE) methods are therefore essential to find a set of optimal CNN mappings subject to one or more design requirements. In this paper, we present an efficient DSE methodology to find (near-)optimal CNN mappings for distributed inference at the edge. To deal with the vast design space of different CNN mappings, we accelerate the searching process by proposing and utilizing a multi-stage hierarchical DSE approach together with a tailored Genetic Algorithm as the underlying search engine.

Publication
Machine Learning and Principles and Practice of Knowledge Discovery in Databases